
Two Way Tasks

Mamnoon Siam

Draft May 30, 2021

1 Strategies

• Work with relaxed constraints (can’t stress enough how important it is).
• Try to plug in old ideas.
• Binary representation (different number means there’s one bit in which they
are off).

• Xor of everything.
• Sum modulo something.
• Group slots together (monkes strong together).
• Relabel everything.
• Hashing/randomized mapping.
• Split elements into modulo classes (e.g. odd-even).

2 Problems

Problem 2.1 (JOISC’17 Broken Device).
Encoder: Encode the non-negative integerX(6 1018) in the N(= 150) length

binary array A. K(6 40) indices P0, P1, . . . , PK−1 from this array
are broken i.e. no matter what the encoder puts in those indices,
it will reset to 0. The encoder will be supplied with N,K, P,X.

Decoder: Decode X. The decoder will only be supplied with N and A.

Subtasks K 6 1 K 6 15 K 6 20 K 6 24 K 6 37
Points 8 41 51 59 85

Solution. Follow the first strategy – work with relaxed constraints.
Idea for K = 1: Encode A[2i] = A[2i + 1] = Xi. We can decode Xi =
A[2i] ∨ A[2i+ 1].
Idea for K = 2: Can get away with the previous encoding? Kinda. It will
be problematic if there’s some i such that P0 = 2i and P1 = 2i + 1. One fix
for this is sending binary representation of such i at the end of A – put i in
A[120 . . . 120 + lg(i)]. Another fix is just skipping 2i and 2i+ 1. But how do we
distinguish a pair of skipped indices from an actual Xi = 0? Now, here’s another
idea – send 01 or 10 if we want to send an actual Xi = 0, and send 00 if it’s
actually a skip. But wait, say Xi = 1 and either 2i ∈ P or 2i+ 1 ∈ P , then the

1

https://oj.uz/problem/view/JOI17_broken_device


decoder will get 01 or 10, which we defined as an actual Xi = 0. To settle all
these fuss, we can just skip 2i and 2i+ 1 altogether if either one of these indices
are in P – put 00. Now, we lost 2K indices, but other indices are intact. You
can see that this strategy will work for K 6 150−2 lg(X)

2
.

Okay, now grouping together two adjacent indices to send one bit of information
gives us the following mapping:

00 → skip
01 → Xi = 0
10 → Xi = 0
11 → Xi = 1

Mapping both 01 and 10 to Xi = 0 seems like a waste. Write X in base 3,
another strategy – be open to other bases instead of only considering the binary
representation. Most of the times the base will come naturally, but if it doesn’t,
you have to hardthink these old ideas. If K 6 37, we lose at most 37 pairs out
of the initial 75. That leaves us with 38 usable pairs, and we can represent any
number in [0, 338). As 338 ≈ 1.35× 1018, this gives us 85 points.
What about grouping three consecutive indices together and finding some clever
mapping like before? Because, one rule of thumb for communication problems is
that the more you group together, the more efficiently you are able to send the
information, with the obvious drawback that it gets hardar and harder to find
mapping, as you make the group size bigger.
As we are expanding the group size, we should be able to send more information
per group. So the amount of bits we are going to send using each group should
depend on the number of broken indices in {3i, 3i + 1, 3i + 2} – more broken
indices means less info, less broken means more info. Indeed, if the three indices
are intact, we can send 2 bits of information, 1 bit of information if 1 bit is broken,
and totally skip if more than 1 are broken.
How to find such a mapping? I tried to find one by hand, e.g. if all bits are intact,
send 1XX, where XX is the two bits... but eventually I got stuck in every possible
way. So we have to find this mapping by bruteforce. How do we model this as a
bipartite graph (because we need some kind of bijection)? At first let’s define
b′ = f(b, S) where b and b′ are some fixed length binary words (in this case the
length is 3). b′i = 0 if either i ∈ S or bi = 0, and b′i = 1 otherwise. In words, we
just reset b’s broken bits from S by applying f .
The left part of the bipartite graph consists of four sets of nodes A0, A1, A2, A3.
Ai means that we want to encode an integer that is i. Each of the nodes in the
sets Ai will correspond to a subset S of {0, 1, 2} meaning that the j (j ∈ S)-th
bit of current block is broken. Let’s describe them:

A0 = {{0}0, {1}0, {2}0,∅0}
A1 = {{0}1, {1}1, {2}1,∅1}
A2 = {∅2}
A3 = {∅3}

Sets have subsript at the end to denote in which Ai they belong to. In total there
are 10 nodes in A. What about the right B side of the bipartite graph?

2



Each of the encoding will be translated into a 3 bit binary word. Those are
000, 001, . . . , 111. But 000 will solely be reserved to express a “skip”. So
B = {001, 010, 011, 100, 101, 110, 111}.
Now, how do we add edges? For each Si, where S ∈ {{0}, {1}, {2},∅} and
0 6 i 6 3 (that is, Si ∈ A), and b ∈ B, we will add an edge between them iff
there exists some length 3 binary word b′ such that f(b′, S) = b.
At this point, we just need to find a perfect matching, but our version of perfect
matching is a bit different.

Define left side of bipartite graph to be A =
⋃k

i=1Ai, where Ai ∩ Aj = ∅
for i 6= j, and right side to be B. Our definition of perfect matching of this
type of bipartite graph is:

1. Every node a ∈ A must be matched to exactly one node b ∈ B.
2. A node b ∈ B can be unmatched, matched to exactly one a ∈ A or

matched to multiple a ∈ A, with an extra restriction that b can be
matched to nodes that belong to the same Ai for some i.

Find necessary and sufficient condition for a bipartite graph to have perfect
matching.

We can find the matching in our small graph by plain bruteforce.

Solution. Another idea is hashing/randomized mapping. Let’s create a random
sequence of 60 bit integers of length 150 (r1, r2, . . . , r150) and hardcode this into
both the encoder and the decoder. Now, these 150 bit vectors’ span has very
very very high probability to cover [2]60. Write X as a linear combination (under
modulo 2, that is, xor) of ri and pass that to P . But if some indices are broken,
they will be 0 regardless. Then again, the encoder knows the broken indices,
and can simply ignore those ris that are broken and try to write X as the linear
combination of the rest of 110 numbers. In fact, even 110 numbers have very
very high possibility of covering the whole [2]60 space.

Problem 2.2 (CEOI 2014 Question). There are two questions x and y. For
simplicity, we can think of them as intergers between 1 and 920 (their hash value
mod 920 + 1, okay?). The answer to x and y is yes and no respectively. Anna
knows the values of x and y, but bob doesn’t. Bob will attend an interview in
which he will be asked one of these two questions. Anna can communicate with
Bob beforehand by sending an integer 1 6 h. How efficiently can she do it? I.e.
the smaller h is, the better score you get.

h > 21 20 19 18 17 16 15 14 13 6 12
Total points 0 27 30 33 37 42 50 60 75 100

Solution. h 6 20 is easy, just send the index of msb(x⊕ y) and value of that bit
in x. The only reason 10 becomes 20 is that we have to send the information of
one of the bits of either x or y. Only if we were told that x < y or something
like that, we’d be done by now! Because, x < y implies msb(x⊕ y)-th bit of x is
0. This wishful thinking inspires us to look for some i such that not only x and
y differ in their i-th bit, but also x’s i-th bit is 0, then we can just send this i.

3

http://ceoi.inf.elte.hu/probarch/14/question.pdf


Obviously this will not be possible always. But what happens when there’s no
valid i? Well, first of all, x ⊃ y. Although it turns out that this doesn’t directly
help in this problem, it tells us that x’s digit sum dx is strictly less than y’s digit
sum dy. Note that dy 6 10 and blog2 yc + 1 6 4. So, in this case we can send
10 + msb(dx ⊕ dy).
We can achieve 60 points with these scrap techniques, not more, unfortunately.
For 100 points, we need some heavy stuff.
Let K be the maximum number h that A is allowed to shout over to B. Assume
A and B aggreed on some sets Mi ⊆ {1, . . . , K} for 1 ≤ i ≤ N . Let B answer
“yes” iff h ∈Mq. Then, A can simply shout any number h ∈Mx\My over to B,
provided that Mx is not a subset of My. Hence, this strategy works out if no
set Mi is a subset of any other set Mj. We can simply choose Mi to be pairwise
distinct bK/2c -element subsets of {1, . . . , K}.
Remark. This choice of the Mi is optimal, i.e., the problem is solvable iff(

K
bK/2c

)
≥ N (cf. Sperner’s theorem).

Problem 2.3 (Russia). Arutyun and Amayak perform a magic trick as follows.
A spectator writes down on a board a sequence of N (decimal) digits. Amayak
covers two adjacent digits by a black disc. Then Arutyun comes and says both
closed digits (and their order). For which minimal N can this trick always work?
NOTE: Arutyun and Amayak have a strategy determined beforehand.

Solution. (by [1]) 101 digits will be enough – that allows 100 different positions
of two adjacent digits, which allows Amayak to communicate the sums of odd-
position and even-position digits modulo 10. Let s0 be the sum of even indices
mod 10, and s1 be that of odd indices, and let p = s0 · 10 + s1. Amayak should
cover p and p+ 1-th digits. On the other hand, 100 digits (or less) is not enough.
There are only 99 choices for which two digits to cover, so only 99 · 1098 different
states of the blackboard for Arutyun to observe when he returns, which is fewer
than the 10100 sequences the spectator has to choose between.

References

[1] hmakholm left over Monica (https://math.stackexchange.com/users/14366).
Algorithm to uniquely determine a number using two adjacent digits. Math-
ematics Stack Exchange. URL https://math.stackexchange.com/q/1439470.
URL:https://math.stackexchange.com/q/1439470 (version: 2015-09-17).

4

https://math.stackexchange.com/q/1439470

	Strategies
	Problems

