
2nd Contest on Segment Trees

Mamnoon Siam

Draft September 1, 2021

A Sequential Operations 1

Let fl,r+1(x) = query(l, r, x) (+1 is just to introduce the half-open interval
notation which we’ll also use in segment trees). fl,r is a linear function i.e.
fl,r(x) = ax+ b for some real numbers a and b; you can show this using simple
inductive argument: if fl,r−1 is linear, fl,r must also be linear.

You can calculate the coefficients of fl,r, that is, a and b, where fl,r(x) = ax+b,
from a1 and b1, the coefficients of fl,m, and a2 and b2, the coefficients of fm,r,
for any l 6 m < r: fl,r is just the composition of those two functions i.e.
fl,r(x) = fm,r(fl,m(x)).

Obviously, we won’t store fl,r for all l and r, but store only the functions
for each segment tree node interval instead. That way, we can find the (at
most) 2 log n disjoint intervals that comprise the query interval, and find their
composition function. To answer a query, we’ll just evaluate the given x for the
resultant function.

As finding composition of two linear functions can be done in constant time,
merging two nodes in segment tree is O(1). This allows us to do updates in the
segment tree in O(log n) time.

B Sequential Operations 2

Let’s recall the functions from the statement:

fi(x) =


x+ ai (ti = 1)

max(x, ai) (ti = 2)

min(x, ai) (ti = 3)

.

We will denote fr(fr−1(. . . fl+1(fl(x)) . . .)) with fl,r+1; so, query(l, r, x) = fl,r+1(x).
What do compositions of several functions fi look like? Let’s look at an

example:

f1(x) f2(x) f3(x) f4(x) f5(x)
x+ 2 min(x, 10) max(x, 3) x− 5 max(x, 1)

1

−15 −5 5 15

−15

−5

5

15

x

y

(a) f1,1(x) = min(∞,max(−∞, x+ 0))

−15 −5 5 15

−15

−5

5

15

x

y

(b) f1,2(x) = min(∞,max(−∞, x+ 2))

−15 −5 5 15

−15

−5

5

15

x

y

(c) f1,3(x) = min(10,max(−∞, x+ 2))

−15 −5 5 15

−15

−5

5

15

x

y

(d) f1,4(x) = min(10,max(3, x+ 2))

−15 −5 5 15

−15

−5

5

15

x

y

(e) f1,5(x) = min(5,max(−2, x− 2))

−15 −5 5 15

−15

−5

5

15

x

y

(f) f1,6(x) = min(5,max(1, x− 2))

2

Every function is of one of the following types:
1.
2.
3.
4.

To see why this is true, think about what happens when you apply fr to fl,r i.e.
take fr(fl,r(x)). If tr = 1, the function just translates vertically. If tr = 2, the
function gets capped from the bottom, after which 1 → 1, 2 → 1 or 4, 3 → 3,
and 4→ 4 or 1. tr = 3 case is similar.

Any such function can be described using three numbers a, b, and c: f(x) =
min(c,max(b, x+ a)), which, in turn, means that any sequence of operations of
any length can be compressing into an equivalent sequence of operations that has
constant length (3 at most). How you want to store such functions is up to you –
you can store the points where the slope changes, or you can just calculate the
values of a, b, and c.

We can think of composing two functions f(x) = min(c1,max(b1, x + a1))
and g(x) = min(c2,max(b2, x+ a2)), g(f(x)), as applying x+ a2, max(b2, x) and
min(c2, x) on f successively.

Another way is to find the formula for a3, b3, and c3 explicitly, where g(f(x)) =
min(c3,max(b3, x+ a3)):

a3 = a1 + a2

b3 = max(b2,min(c1 + a2, b1 + a2))

c3 = min(c2,max(b2, c1 + a2))

We can store fl,r for every node u in the segment tree over the interval [l, r).
Merging two nodes can be done in constant time, giving us an update and query
complexity of O(log n).

C Sequential Operations 3

If you distribute the type-2 multiplications over the type-1 summations you will
see that

query(l, r) =
∑

l6i<j6r
ai=1
aj=2

bi · bj.

For l, r (1 6 l 6 r 6 n+ 1), let fl,r be an object with three attributes x, y, and
z, where

x =
∑
l6i<r
ai=1

bi,

y =
∑
l6i<r
ai=2

bi, and

z = query(l, r − 1).

3

We can find the values of the attributes of fl,r using the values of the attributes
of fl,m and fm,r, where l 6 m < r.

Now, just superimpose a segment tree of these objects over the given sequences.

D Sequential Operations 4

Complex Numbers

We will represent 2d points using complex numbers: P (x, y) ≡ x+ yi.
Properties of complex numbers allow us to describe rotation of a point Q wrt

another point Q using only arithmetic operators:

rotate(P,Q, θ) = (Q− P) · cis(θ) + P.

In our problem θ = 90◦ · t for some t ∈ {1, 2, 3}. Therefore, cis(θ) = ωt, where ω
is the fourth root of unity (that is, ω = cis

(
π
2

)
= i).

Rest of the solution is similar to problem A.

Matrices

Instead of using complex numbers, we can work with vectors and use matrix
multiplications to describe rotations. Using matrices is a more general approach
because we can then generalize for higher dimensions.

Let’s represent points using vectors i.e. P (x, y) ≡ ~P =
(
x y

)
. If we want to

rotate vector ~u θ degrees ccw wrt the origin, then we should multiply ~u by the
matrix Mθ, that is, ~uMθ, where

Mθ =

(
cos θ sin θ
− sin θ cos θ

)
.

So,
rotate(~P , ~Q, θ) = (~Q− ~P)Mθ + ~P .

As matrix multiplication is distributive over matrix addition, this approach also
reduces to the operations in problem A.

Remark D.1. It is possible to represent a “rotate wrt another point” op-
eration using only one matrix multiplication. The problem with standard
matrix multiplication is that it doesn’t allow any translate operation. One
way of incorporating rotate + translate operation into one single matrix
multiplication is adding one more dimension in the vector space, that is,
introducing a new z coordinate in our 2d vectors; this z coordinate helps us
copy some extra information while doing matrix multiplication. These are
called homogeneous coordinates.

4

E Divisible Subsequences Queries

In each of the nodes u over the interval [l, r) in the segment tree, store an array
fl,r[. . .], where fl,r[i] is the number of subsequences of a[l, r) with sum modulo k
equal to i.

We can calculate the array fl,r from the arrays fl,m and fm,r in O(k2) com-
plexity. Update and query complexity: O(k2 log n).

F Dot Maximizing Subsequence Queries

For an interval [l, r) (1 6 l < r 6 n+ 1), let’s define the cost table fl,r[. . .][. . .] as
follows:

fl,r[x][y] = max
l6i1<i2<...<ib−a+1<r

y∑
j=x

aij · bj,

where 1 6 x 6 y 6 k.
We can calculate the cost table fl,r from the cost tables fl,m and fm,r in O(k3)

time:

fl,r[x][y] = max(fl,m[x][y]︸ ︷︷ ︸
either comes

completely from
the left side

, fm,r[x][y]︸ ︷︷ ︸
or completely from

the right side

,
y−1
max
z=x

fl,m[x][z] + fm,r[z + 1][y]︸ ︷︷ ︸
or partially from

the left side
and partially from

the right side

).

By merging cost tables of segment tree intervals we can both answer queries and
do updates in O(k3 log n) complexity.

G Max Cost Subarray Split

The straightforward way to find the difference between the maximum and the
minimum of an array would be

n
max
i=1

ai −
n

min
i=1

ai.

A bit more unconventional approach would be to evaluate the following expression:

max
16i,j6n

ai − aj.

If we describe the gap of an array using the later expression, our task will then
be calculating the following expression:

max
l6i1<i2<...<ik−1<ik=r︸ ︷︷ ︸

fix the split

k∑
j=1

max
l6xj ,yj6ij

axj − ayj︸ ︷︷ ︸
gap of the
j-th block︸ ︷︷ ︸

sum of the gaps

.

Since our expression is of the form max
∑

max, the problem can be reformulated
as follows:

5

Choose a sequence of 2k (1 6 k 6 r − l + 1) indices, i1, i2, . . . , i2k−1, i2k
and a sequence of 2k integers s1, s2, . . . , s2k, which satisfy the following
conditions:

1. i2j−1 6 i2j, ∀1 6 j 6 k,
2. i2j < i2j+1, ∀1 6 j < k,
3. l 6 i1, i2k 6 r,
4. si ∈ {−1, 1}, and
5. s2k−1 · s2k = −1; think of it as a paired plus-minus..

Find the maximum value of

2k∑
j=1

aij · sj (1)

This looks somewhat similar to the previous problems. In this problem, we will
calculate the maximum values of some portions of the expression (1). Therefore,
for some interval [l, r) (1 6 l < r 6 n+ 1), we’ll define the cost table fl,r[. . .][. . .]
as follows:

fl,r[x][y] x and y can be regarded as objects ∈ {−1,∅, 1}, which means that
the portion of (1) we are trying to calculate the maximum value of,
starts with x, then forms some paired plus-minuses, and finally ends
with y, and is completely from the interval [l, r); this entry of the
table stores that maximum possible value. The object ∅ means that
there’s no unpaired plus/minus at the end/beginning.

While combining two portions, they must be compatible (the left portion is x . . . y
and the right portion is y′ . . . z):

y y′

−1 1
1 −1
∅ ∅

We can calculate fl,r from fl,m and fm,r in O(33) (well, constant time. . .), achieving
an update and query complexity of O(log n) (with a constant factor of 27).

H Shortest Path Queries in Grid

For an interval [l, r) (1 6 l < r 6 n + 1), let’s define the cost matrix fl,r as
follows: fl,r[x][y] is the length of the shortest path from (x, l) to (y, r−1). We can
calculate fl,r from fl,m and fm,r in O(n3) complexity using the following formula:

fl,r[x][y] = min
16z,w6n
|z−w|61

fl,m[x][z] + fm,r[w][y].

Maintain these matrices in each node of the segment tree.

6

I Range Connected Component Queries

We will consider the graph where the vertex set is the cells of the grid and two
vertices have edge between them if their corresponding cells are adjacent and are
of the same color.

For an interval [l, r) (1 6 l < r 6 n+ 1), let’s define few the following things:

Vl,r the set of vertices in the l-th and the (r − 1)-th column
Cl,r connectivity information of the vertices from Vl,r; this can be anything

you want – a tiny dsu on 2n vertices, a list of groups of vertices from the
same connected component etc.

fl,r the number of shaded connected components in the subgrid [1, n]× (l, r−
1) – those that lie strictly inside the interval [l, r) and are completely
disconnected from the vertices ∈ Vl,r.

According to the definitions, the answer to the query with segment [l, r) will be:

fl,r + (the number of connected components in Cl,r).

The neat thing is that we can calculate Cl,r and fl,r from Cl,m, fl,m, Cm,r, and fm,r
in O(n) or O(nα(n)) complexity. Finally, we just need to superimpose a segment
tree of these objects over the columns of the grid.

J OR Subsegment Queries

Let U = max ai.
First observation: if we take the prefix OR array of an array, it will have at

most log2 U different integers. Why? Because, each time the prefix OR changes,
the new OR will have at least one more set bit than the old one, and the number
of set bits cannot increase more than log2 U times.

Now, for an interval [l, r), let’s define the following:

fl,r the value of count(l, r − 1)
pl,r a sorted list of pairs containing the integers that occur in the prefix OR

array of a[l . . . r) and their corresponding occurrences – sorted by the
values; this list will have at most logU pairs.

sl,r a sorted list of pairs containing the integers that occur in the suffix OR
array of a[l . . . r) and their corresponding occurrences – sorted by the
values; this list will also have at most logU pairs.

We can calculate pl,r from pl,m and pm,r, sl,r from sl,m and sm,r, and fl,r from fl,m,
fm,r, sl,m, pm,r in O(logU) complexity:

fl,r = fl,m + fm,r +

(
number of good subarrays starting

at [l,m) and ending at [m, r)

)
.

The rightmost term can be computed in O(|sl,m|+ |pm,r|) complexity using two
pointers over sl,m and pm,r.

As we can merge two adjacent intervals in O(logU) time, we can achieve the
update and query complexity of O(log n logU).

7

K Circular Recurrence Queries

Let 1 = c1, c2, . . . , ck = n + 1 be the indices of the endpoints. By linearity of
expectation, the answer is

k−1∑
i=1

E(ci, ci+1),

where E(l, r) is the expected number of days needed for Creatnx to go from l to
r given that l is the only checkpoint.

If we can somehow manage to implement E(l, r), we can maintain the sum
dynamically.

First, let’s see how we can calculate E(1, n+1): let ei be the expected number
of days needed to go to n+ 1, if Creatnx is currently at cell i. We have en+1 = 0
and

ei = piei+1 + (1− pi)e1
for every i ∈ [1, n]. Unfortunately, there are cycles in the recurrence relations;
however, we can do the following: we can write every ei in terms of only e1 –
ei = xe1 + y for some x, y. We can find the expressions of all ei in decreasing
order of i, and finally get e1 = xe1 + y from which we can determine the value of
e1.

We can generalize this trick further: for two cells l, r (1 6 l < r 6 n+1), let’s
define fl,r(x, y) as the expected number of days needed to reach some destination
d (note that, it’s not necessarily r) if:

• Creatnx is currently at cell l,
• the expected number of days needed to go from r to d is y, and
• and the expected number of days needed to go from the rightmost checkpoint
6 l to d is x.

fl,r(x, y) is a polynomial in x and y of degree 1 i.e. fl,r(x, y) = ax + by + c for
some a, b, c ∈ R.

To evaluate E(l, r), we should solve the equation x = fl,r(x, 0).
We can use the following formula to calculate the coefficients of fl,r in O(1):

fl,r(x, y) = fl,m(x, fm,r(x, y)).

Thus, we can find fl,r for any l, r in O(log n) using segment tree.

L Majority Queries

L.1 2-Majority Queries

We’ll use Boyer-Moore majority vote algorithm. This algorithm finds the majority
element from a given list in linear time and constant space. The algorithm is
mainly based on the following observation: if you see two different elements in
the list, take them and dump them; the majority of the list doesn’t change even
after dumping those elements. We keep doing this eliminating as long as there’s
more than one distinct element. After that, if there’s any element left, that may

8

be a majority; we have to check that one element. However, if there’s no element
left, it’s guaranteed that there’s no majority. We can think of it as “the majority
will always survive the elimination”. The process is associative, meaning that
if we were to split the list into two, run the process in both of them separately,
combine them, and finally run the elimination process again, we wouldn’t lose
the majority information.

Instead of choosing pairs arbitrarily, the Boyer-Moore algorithm does so in a
quite neat manner (from wikipedia):

• Initialize an element m and a counter i with i = 0
• For each element x of the input sequence:

– If i = 0, then assign m = x and i = 1
– else if m = x, then assign i = i+ 1
– else assign i = i− 1

• Return m
The advantage of this algorithm is that all information of the process can be
described using only two integers.

In each node u over the interval [l, r) in the segment tree, we’ll store the value
of m and i that we’d get by running the algorithm on a[l, r). As we can merge
the (m, i) pairs of two intervals in O(1), we can find the candidate element of any
range in O(log n) time.

L.2 K-Majority Queries

This is a generalization of the previous algorithm. Look up generalization of
Boyer-Moore’s majority vote algorithm or see G of this for details.

M Shortest Path Queries in Path Graph

Let’s introduce some notations:

uv a path from u to v
P (x . . . y) a path whose first and last edge is of color x and y resp.
∅ a sentinel color which is different from all other colors in the input
δu,v(a, b) the shortest path P (x . . . y) from u to v such that x 6= a and y 6= b;

in particular, δu,v(∅,∅) is the plain shortest path from u to v.

Let’s say that we are trying to find the shortest path between x and y, which
have two nodes l and r between them (x 6 l < r 6 y), by concatenating the paths
from x to l, l to r, and r to y. To do that, we need to select some lr-subpath.
Which one should we choose? Should we try all of them? Definitely not, but it
feels like we’d be almost correct if we had chosen the shortest path from l to r
i.e. δl,r(∅,∅) = P1(a1 . . . b1). Almost; we’d get into trouble if, in the xy-shortest
path, the color (denote it with s) of the last edge of the xl-subpath is equal to a1,
or the color (denote it with t) of the first edge of the ry-subpath is equal to b1.
So, it’s clear that we can’t just get away with using only the trivial shortest path.
What paths should we go through then? Let’s draw a diagram:

9

https://codeforces.com/blog/entry/44754

l
s

x
a3

a2

a1

a4

a5

r
t y

b3

b2
b1

b4

b5

It turns out that the following paths are sufficient:

P1(a1 . . . b1) = δl,r(∅,∅)

P2(a2 . . . b2) = δl,r(a1,∅)

P3(a3 . . . b3) = δl,r(a1, b2)

P4(a4 . . . b4) = δl,r(∅, b1)
P5(a5 . . . b5) = δl,r(a4, b1)

To understand why, go through the tree shown in the next page in-order.
Therefore, for two nodes l, r (1 6 l < r 6 n), we should maintain only the

“top 5” shortest paths. Let’s denote this list with Tl,r (because T from Top 5, and
it looks like the T is giving you a high-five). In order to calculate the list Tl,r,
we should cross multiply the lists Tl,m and Tm,r, try (two paths can be combined
if the color of the last edge of the first one is different than that of the second
one) to combine two paths, and then take the top 5 paths from the crossed list.
Although, crossing two lists would take only O(52) time, extracting the top 5
paths from the crossed list would take O(5|Tl,m||Tm,r|) time, because every call
to δ∗,∗(a, b) has to iterate over the whole list – thus, a fat complexity of O(53)
(cough O(1) cough) to merge two intervals.

As we can merge two intervals in O(1) time, we can answer queries and update
the segment tree in O(log n) (with a constant factor of 125, yikes).

N Wild Boar

This is essentially the previous problem with the extra subproblem of running an
all pair shortest path algorithm.

O Bitaro, Who Leaps through Time

Let’s assume that Aj < Cj; the other direction can be solved by applying the
same algorithm in the reversed array.

Furthermore, let’s do Ri := Ri − 1 for all i ∈ [1, n). Now, to pass through the
i-th road, we must leave the city i at time x satisfying Li 6 x 6 Ri.

10

Since s = a1
and t 6= b1, b2,
P2 is valid
and the best
subpath for us.

Since s = a1
and t = b2, we
have no other
choice but to
take the next
best subpath
P3(a3 . . . b3) =
δl,r(a1, b2).

Since s 6= a1, a4
and t = b1,
the best

possible choice
for us is P4.

Since s = a4
and t = b1, we
have no other
choice but to
take the next
best subpath
P5(a5 . . . b5) =
δl,r(a4, b1).

Since s = a1,
the next best
thing we can
do is to take
P2(a2 . . . b2) =
δl,r(a1,∅)

and see what
happens.

t 6= b2
t = b2

Since t = b1,
the next best
thing we can
do is to take
P4(a4 . . . b4) =
δl,r(∅, b1)

and see what
happens.

s 6= a4
s = a4

If s = a1, t = b1,
the optimal

subpath will be
either P2 or P3.

Our initial best guess
for the lr-subpath
is the shortest path
between l and r, that
is, P1(a1 . . . b1) =
δl,r(∅,∅); how-
ever, this may
not be enough.

s = a1, t 6= b1 s 6= a1, t = b1

s = a1, t = b1

11

Bitaro’s journey and the restrictions on the edges can be visualized in the
following way:

In the 2d plane, the x-axis is Bitaro’s position and the y-axis is the current
day.
For each i, there is an upward facing ray starting at the point (i, Ri) and a
downward facing ray starting at the point (i, Li).
A query (Aj, Bj, Cj, Dj) describing Bitaro’s journey, starting at the city
Aj on day Bj and ending at the city Cj on day Dj , means that Bitaro will
start from point S(Aj − 1

2
, Bj − 1

2
) and end up at point T (Cj − 1

2
, Dj − 1

2
).

When Bitaro is at point (x, y), allowed moves for him are:

1 (x+ 1, y + 1) no cost
2 (x, y + 1) no cost
3 (x, y − 1) costs 1 coin

Of course, Bitaro can only make a move if he doesn’t cross over any of the
rays (i.e. while moving from one point to another, the line segment joining
them cannot intersect any ray internally; however, it is allowed for the line
segment to touch rays at their starting point).
Bitaro wants to go from point S to point T using minimum number of
coins.

S

T

The following greedy algorithm works: whenever possible, he should apply
the 1st move. Otherwise, if he’s about to hit an upward facing ray, he should go
down (move 3), and if he’s about to hit a downward facing ray, go he should go
up (move 2).

S

T

12

Bitaro has to pay for the red lines.
Diagonal lines are hard to comprehend. Let’s make make them horizontal: do

Li := Li − i, Ri := Ri − i, Bj := Bj − Aj, and Dj := Dj − Cj. The new moves
are:

1 (x+ 1, y) go right, has no cost
2 (x, y + 1) go up, has no cost
3 (x, y − 1) go down, costs 1 coin

S

T

In other words, we have applied the linear transformation
(

1 0
−1 1

)
on the whole

system.
Let’s forget about Dj for now; we’ll add the extra cost at the end. For some

l, r, x (1 6 l < r 6 n), we’ll try to find the sum of red lines if we start from city l
on day x and finish at city r on some day (we wish to find this day, y, as well).
It can be done using the following algorithm:

Function Run(l, r, x):
s← 0;
y ← x;
for i← l to r − 1 do

s← s+max(0, y −Ri);
y ← min(y,Ri);
y ← max(y, Li);

return y, s;

y-value of Run(l, r, x) is the day on which Bitaro will arrive at city r, and the
s-value is the sum of the red lines.

For two cities l and r (l 6 r), let’s define the following two functions:

fl,r(x) the y-value of Run(l, r, x)
gl,r(x) the s-value of Run(l, r, x)

For any m (l < m < r), the following equations are satisfied:

fl,r(x) = fm,r(fl,m(x)) (2)
gl,r(x) = gl,m(x) + gm,r(fl,m(x)) (3)

13

It is easy to see that fl,r will be either a straight horizontal line or piecewise
linear function that looks like .

Claim O.1. gl,r(x) looks like .

To verify this claim, let’s look at some diagrams:

. . .

.

. . .

.

. . .

.

Dots mean that objects from those regions don’t matter.
We will shoot the initial rightward ray from the left at an altitude of x (as

in the argument of gl,r(x)). We’ll gradually decrease the altitude. Initially, first
obstacle for the ray will be an upward facing ray. As long as the first obstacle is
an upward facing ray, gl,r(x) will continue to decrease as we decrease x.

At some point, while decreasing the altitude, the rightward ray’s first obstacle
will be a downward facing ray. From that point on, value of gl,r(x) won’t depend
on x i.e. it will remain constant. This supports our claim.

How do we find fl,r and gl,r from fl,m, gl,m, fm,r, and gm,r? fl,r is pretty simple;
However, gl,r is a bit tricky. We have two cases:

Case 1 fl,m is an horizontal straight line. In such case, the rightmost term of
(3) is a constant (and can be evaluated easily), which means that gl,r
is just gl,m shifted upward.

Case 2 fl,m looks like . Since gm,r(x) = , the graph of gm,r(fl,m(x))
will also look like . Although gl,m + gr,m(fl,m(x)) =

()
+()

isn’t necessarily equal to , there are some special properties
in this problem that we can use to make things a bit tidier. Notice that,
for fl,m to look like , minm−1i=l Ri has to be larger than maxm−1i=l Li,
which, in turn, means that the horizontal piece of fl,m is y = 0, and
the diagonal piece of fl,m, y = x − c (for some positive constant c),
starts at x = minm−1i=l Ri. This, combining with the fact that the later
horizontal piece of gr,m(fl,m(x)) starts at x = minm−1i=1 Ri, means there
will be no horizontal piece in between two diagonal pieces in the graph
of gl,r; gl,r is indeed a

14

x

y
gm,r(fl,m(x))
gl,m(x)

(a) gm,r(fl,m(x)) and gl,m(x)

x

y

(b) gl,r(x) = gm,r(fl,m(x)) + gl,m(x)

Exact formulas to calculate the functions are left as an exercise.
As we can merge two intervals in constant time, updates and queries can be

done in O(logN) time.

P Max Mex

15

	Sequential Operations 1
	Sequential Operations 2
	Sequential Operations 3
	Sequential Operations 4
	Divisible Subsequences Queries
	Dot Maximizing Subsequence Queries
	Max Cost Subarray Split
	Shortest Path Queries in Grid
	Range Connected Component Queries
	OR Subsegment Queries
	Circular Recurrence Queries
	Majority Queries
	2-Majority Queries
	K-Majority Queries

	Shortest Path Queries in Path Graph
	Wild Boar
	Bitaro, Who Leaps through Time
	Max Mex

